Генная инженерия. Презентация по биологии.

Презентации

Здесь вы сможете скачать слайды презентации на тему «Генная инженерия» по биологии.

Чуть ниже будет информация с изображений, которая используется в Википедии.

Генная инженерия​.

Генная инженерия — это​

  • Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК. Выделение генов из организма(клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.​

Значение генной инженерии​.

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования.

Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.​

Проводятся первые эксперименты по использованию бактерий с перестроенной ДНК для лечения больных.​

генная инженерия

История появления.

Генная инженерия рождалась в 1971–1973 годах сразу в нескольких американских лабораториях.

В 1972-м группа стэнфордского биохимика Пола Берга впервые провела сплайсинг генов — сшила фрагменты ДНК разного происхождения, получив так называемую рекомбинантную ДНК: в ее состав вошли участки геномов онкогенного вируса SV40 и бактериофага лямбда, несущего галактозный оперон кишечной палочки.

Создание такой химеры сразу же вызвало опасения некоторых биологов относительно безопасности ее введения в клетки живых организмов. Заразился этими опасениями и сам Берг. Группа отложила эксперименты in vivo, добровольно отказавшись от славы создателей первого генетически модифицированного организма. А главное, с тех самых пор развитие генной инженерии постоянно сопровождали и ограничивали всевозможные этические диллемы.​

Пол Берг генная инженерия
Пол Берг

Историю развития генетической инженерии можно условно разделить на три этапа.​

Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.​

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.​
Третий этап — начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных.​

​Работы Берга и Коэна взбудоражили научный мир, обывателей и фондовые биржи (см. врезку «Генная инженерия и рынок») и открыли эру молекулярной биотехнологии. Уже в ближайшие годы начался отсчет полезных продуктов, полученных с помощью рекомбинантных ДНК. Но были решены далеко не все теоретические и практические задачи, и генная инженерия шаг за шагом, открытие за открытием, развивается по сей день.​

В 1974 году Рудольф Йениш создал первое трансгенное млекопитающее — мышь, которой на раннем этапе эмбриогенеза встроили в ДНК ретровирус. Тогда и в дальнейшем «онкомышей получали, конечно, не ради забавы, а ради выведения модельных линий для изучения канцерогенеза.​

В 1975 году Фредерик Сенгер до того занимавшийся установлением первичной структуры белков и РНК, разработал «плюс и минус» метод секвенирования ДНК, не слишком производительный, но в 1977-м усовершенствованный до «дидезокси-метода. Более быстрая и точная технология позволила группе Сенгера справиться с целым геномом бактериофага φX174. Тогда же Уолтер Гилберт и Аллан Максам разработали совершенно иной способ чтения ДНК, воспользовавшись подсказкой сотрудника Института молекулярной биологии им. В.А. Энгельгардта Андрея Мирзабекова, посетившего их лабораторию в 1975-м.​

В 1989-м удалось получить первую мышь с нокаутированными генами, крыс осилили гораздо позже — в 2003-м

В 1990 году калифорнийские биологи пытались сделать цветки трансгенной петунии более яркими, а получили еще более бледные. Так неожиданно себя проявила РНК-интерференция, которую позже, в 1998 году, подробно описали у червя Caenorhabditis elegans Крейг Мелло и Эндрю Файер.​

В 1995-м секвенировали первый геном свободноживущего прокариота.Стратегии, разработанные для секвенирования дрожжевой ДНК, легли в основу других крупных проектов, включая «Геном человека»​

В апреле 2003 года завершились основные работы по секвенированию генома человека.​

Герберт Бойер и Стенли Коэн

Герберт Бойер и Стенли Коэн​ — создатели первого трансгенного организма и обладатели первого генно-инженерного патента.

Удивительные примеры генной инженерии. ​

Светящиеся коты.

​В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих. И вот, как он это сделал: исследователь взял кожные клетки мужских особей турецкой ангоры и, используя вирус, ввел генетические инструкции по производству красного флуоресцентного белка. Затем он поместил генетически измененные ядра в яйцеклетки для клонирования, и эмбрионы были имплантированы назад донорским котам, что сделало их суррогатными матерями для собственных клонов.​

Светящийся кот генная инженерия

​Паучьи козы.​

​Паутина применяется в примерно полутора миллионах целей, и с каждым днем это число растёт. Благодаря её невероятной прочности по отношению к размеру, её тестировали для использования в пуленепробиваемых жилетах, искусственных сухожилиях, бинтах, и даже компьютерных чипах и волоконно-оптических кабелях для хирургии. Однако получение достаточного количества паутины требует десятков тысяч пауков и долгого времени ожидания, не говоря уже о том, что пауки, как правило, убивают других пауков на своей территории, поэтому их нельзя разводить так как, скажем, пчел. ​

Поэтому, взгляд учёных пал на коз, единственных животных в мире, которые могли бы принести пользу за счет добавления ДНК паука в их ДНК. Профессор Рэнди Льюис (Randy Lewis) из Университета Вайоминга (University of Wyoming), изолировал гены, которые позволяют паукам производить каркасную нить паутины или самый сильный тип паутины, который пауки используют при постройке своих паутин (большинство пауков производит шесть различных типов нитей). Затем он соединил эти гены с теми генами, которые отвечают за выработку молока у коз. Затем он спарил несколько раз козу с изменёнными генами, в результате чего получилось семь козлят, три из которых унаследовали ген, ответственный за выработку паутины. ​

Всё что сейчас остаётся это доить коз и отфильтровывать паутину, ну ещё может изредка бороться с преступностью. Профессор Льюис не чужд иронии – его офис завешан постерами Человека Паука.​

Паучьи козы

Поющая мышь​.

В большинстве случаев учёные проводят эксперименты с какой-либо целью. Тем не менее, в некоторых случая они просто впрыскивают кучу генов в мышей и ждут результатов. Именно так вывели мышку, которая чирикает как птица. Этот результат был получен в результате одного из исследований «Проекта Развитая Мышь» (Evolved Mouse Project), японского научно-исследовательского проекта, который использует грубый подход к генной инженерии – они модифицируют мышей, дают им размножаться, и отмечают результаты.​

Одним прекрасным утром, проверяя новый помёт мышей, они обнаружили, что одна мышка «поёт как птичка». Ободрённые полученным результатом они сфокусировали своё внимание на этой мыши и теперь в их распоряжении находятся сто подобных экземпляров. Кроме того они заметили ещё кое-что интересное: когда обычные мыши росли вместе с поющими, они начинали использовать различные звуки и тоны, наподобие диалекта, используемого людьми. Ниже представлено видео одной из таких мышей.​

Для чего же могут использоваться поющие мыши? Кто знает. Но целью проекта является искусственное ускорение эволюции, и это ускорение как минимум набирает странные обороты. Профессор Такеши Яги (Takeshi Yagi) также утверждает, что у них есть мышь «с короткими конечностями и хвостом, похожая на таксу». Странно это всё.​

Мышь генная инженерия

​Свиньи с человеческими органами​.

Наверное, дальше всех кто пытался скрестить геном человека и животных зашли несколько отдельных исследователей, которые начали размножать свиней с органами, готовыми к трансплантации человеку. Ксенотрансплантация или трансплантация органов других видов человеку, оставалась неразрешённой задачей из-за специфического фермента, вырабатываемого свиньями, который отторгался человеческим телом. ​

Рэндалл Пратер (Randall Prather), исследователь из Университета Миссури (University of Missouri) клонировал четырёх свиней, которые лишены гена, ответственного за производство этого фермента. Шотландская компания, та же что успешно клонировала овечку Долли, также успешно клонировала пять свиней, которые тоже лишены этого гена. ​
Вполне возможно, что в ближайшем будущем такие генно-модифицированные свиньи будут выращиваться, как заводы по производству органов. Другой вероятностью является то, что реальные человеческие органы будут выращиваться внутри свиней. Это исследование еще вызывает множество споров, однако крысиную поджелудочную железу уже удалось вырастить внутри мыши.​

Свиньи

​Лекарственные яйца​.

Британские ученые создали породу генетически модифицированных кур, которые производят в яйцах лекарства против рака. Животным добавили в ДНК гены людей, и, таким образом, человеческие белки секретируются в белок яиц вместе со сложными лекарственными белками, схожими с препаратами, используемыми для лечения рака кожи и других заболеваний.​

Что же именно содержится в этих борющихся с болезнями яйцах? Куры несут яйца с miR24 – молекулой, способной лечить злокачественные опухоли и артрит, а также с человеческим интерфероном b-1a – антивирусным лекарством, схожим на современные препараты от множественного склероза.​

Лекарственные яйца

Применение в научных исследованиях​.

Нокаут гена.Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию. Основные методы реализации: цинковый палец, морфолино и TALEN. Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а изменённые клетки имплантируют в бластоцисту суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.​

Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.​

Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка (GFP). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, её побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.​

Исследование механизма экспрессии.Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотори служит для связывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.​

Генная инженерия

​Генная инженерия человека​.

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.​

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента. Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.​

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах. Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — обыкновенная игрунка.​

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.​

Оцените статью
Adblock
detector